3.411 \(\int \frac{\cos ^4(c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=91 \[ -\frac{\cos ^5(c+d x)}{5 a d}+\frac{\cos ^3(c+d x)}{3 a d}-\frac{\sin (c+d x) \cos ^3(c+d x)}{4 a d}+\frac{\sin (c+d x) \cos (c+d x)}{8 a d}+\frac{x}{8 a} \]

[Out]

x/(8*a) + Cos[c + d*x]^3/(3*a*d) - Cos[c + d*x]^5/(5*a*d) + (Cos[c + d*x]*Sin[c + d*x])/(8*a*d) - (Cos[c + d*x
]^3*Sin[c + d*x])/(4*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.16189, antiderivative size = 91, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2839, 2568, 2635, 8, 2565, 14} \[ -\frac{\cos ^5(c+d x)}{5 a d}+\frac{\cos ^3(c+d x)}{3 a d}-\frac{\sin (c+d x) \cos ^3(c+d x)}{4 a d}+\frac{\sin (c+d x) \cos (c+d x)}{8 a d}+\frac{x}{8 a} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^4*Sin[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

x/(8*a) + Cos[c + d*x]^3/(3*a*d) - Cos[c + d*x]^5/(5*a*d) + (Cos[c + d*x]*Sin[c + d*x])/(8*a*d) - (Cos[c + d*x
]^3*Sin[c + d*x])/(4*a*d)

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 2568

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(a*(b*Cos[e
+ f*x])^(n + 1)*(a*Sin[e + f*x])^(m - 1))/(b*f*(m + n)), x] + Dist[(a^2*(m - 1))/(m + n), Int[(b*Cos[e + f*x])
^n*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*
m, 2*n]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx &=\frac{\int \cos ^2(c+d x) \sin ^2(c+d x) \, dx}{a}-\frac{\int \cos ^2(c+d x) \sin ^3(c+d x) \, dx}{a}\\ &=-\frac{\cos ^3(c+d x) \sin (c+d x)}{4 a d}+\frac{\int \cos ^2(c+d x) \, dx}{4 a}+\frac{\operatorname{Subst}\left (\int x^2 \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{a d}\\ &=\frac{\cos (c+d x) \sin (c+d x)}{8 a d}-\frac{\cos ^3(c+d x) \sin (c+d x)}{4 a d}+\frac{\int 1 \, dx}{8 a}+\frac{\operatorname{Subst}\left (\int \left (x^2-x^4\right ) \, dx,x,\cos (c+d x)\right )}{a d}\\ &=\frac{x}{8 a}+\frac{\cos ^3(c+d x)}{3 a d}-\frac{\cos ^5(c+d x)}{5 a d}+\frac{\cos (c+d x) \sin (c+d x)}{8 a d}-\frac{\cos ^3(c+d x) \sin (c+d x)}{4 a d}\\ \end{align*}

Mathematica [B]  time = 2.4064, size = 258, normalized size = 2.84 \[ \frac{120 d x \sin \left (\frac{c}{2}\right )-60 \sin \left (\frac{c}{2}+d x\right )+60 \sin \left (\frac{3 c}{2}+d x\right )-10 \sin \left (\frac{5 c}{2}+3 d x\right )+10 \sin \left (\frac{7 c}{2}+3 d x\right )-15 \sin \left (\frac{7 c}{2}+4 d x\right )-15 \sin \left (\frac{9 c}{2}+4 d x\right )+6 \sin \left (\frac{9 c}{2}+5 d x\right )-6 \sin \left (\frac{11 c}{2}+5 d x\right )+120 d x \cos \left (\frac{c}{2}\right )+60 \cos \left (\frac{c}{2}+d x\right )+60 \cos \left (\frac{3 c}{2}+d x\right )+10 \cos \left (\frac{5 c}{2}+3 d x\right )+10 \cos \left (\frac{7 c}{2}+3 d x\right )-15 \cos \left (\frac{7 c}{2}+4 d x\right )+15 \cos \left (\frac{9 c}{2}+4 d x\right )-6 \cos \left (\frac{9 c}{2}+5 d x\right )-6 \cos \left (\frac{11 c}{2}+5 d x\right )+120 \sin \left (\frac{c}{2}\right )}{960 a d \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^4*Sin[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

(120*d*x*Cos[c/2] + 60*Cos[c/2 + d*x] + 60*Cos[(3*c)/2 + d*x] + 10*Cos[(5*c)/2 + 3*d*x] + 10*Cos[(7*c)/2 + 3*d
*x] - 15*Cos[(7*c)/2 + 4*d*x] + 15*Cos[(9*c)/2 + 4*d*x] - 6*Cos[(9*c)/2 + 5*d*x] - 6*Cos[(11*c)/2 + 5*d*x] + 1
20*Sin[c/2] + 120*d*x*Sin[c/2] - 60*Sin[c/2 + d*x] + 60*Sin[(3*c)/2 + d*x] - 10*Sin[(5*c)/2 + 3*d*x] + 10*Sin[
(7*c)/2 + 3*d*x] - 15*Sin[(7*c)/2 + 4*d*x] - 15*Sin[(9*c)/2 + 4*d*x] + 6*Sin[(9*c)/2 + 5*d*x] - 6*Sin[(11*c)/2
 + 5*d*x])/(960*a*d*(Cos[c/2] + Sin[c/2]))

________________________________________________________________________________________

Maple [B]  time = 0.067, size = 279, normalized size = 3.1 \begin{align*}{\frac{1}{4\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{9} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}-{\frac{3}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{7} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+4\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}}{da \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{5}}}-{\frac{4}{3\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+{\frac{3}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+{\frac{4}{3\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}-{\frac{1}{4\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+{\frac{4}{15\,da} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+{\frac{1}{4\,da}\arctan \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c)),x)

[Out]

1/4/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^9-3/2/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^
7+4/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^6-4/3/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^
4+3/2/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^3+4/3/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c
)^2-1/4/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)+4/15/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5+1/4/a/d*arctan(t
an(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [B]  time = 1.69164, size = 375, normalized size = 4.12 \begin{align*} -\frac{\frac{\frac{15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{80 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac{90 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{80 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{240 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac{90 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac{15 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - 16}{a + \frac{5 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{10 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac{10 \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac{5 \, a \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} + \frac{a \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}}} - \frac{15 \, \arctan \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/60*((15*sin(d*x + c)/(cos(d*x + c) + 1) - 80*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 90*sin(d*x + c)^3/(cos(d
*x + c) + 1)^3 + 80*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 240*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 90*sin(d*x
 + c)^7/(cos(d*x + c) + 1)^7 - 15*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 16)/(a + 5*a*sin(d*x + c)^2/(cos(d*x +
 c) + 1)^2 + 10*a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 10*a*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 5*a*sin(d*x
 + c)^8/(cos(d*x + c) + 1)^8 + a*sin(d*x + c)^10/(cos(d*x + c) + 1)^10) - 15*arctan(sin(d*x + c)/(cos(d*x + c)
 + 1))/a)/d

________________________________________________________________________________________

Fricas [A]  time = 1.01536, size = 155, normalized size = 1.7 \begin{align*} -\frac{24 \, \cos \left (d x + c\right )^{5} - 40 \, \cos \left (d x + c\right )^{3} - 15 \, d x + 15 \,{\left (2 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{120 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/120*(24*cos(d*x + c)^5 - 40*cos(d*x + c)^3 - 15*d*x + 15*(2*cos(d*x + c)^3 - cos(d*x + c))*sin(d*x + c))/(a
*d)

________________________________________________________________________________________

Sympy [A]  time = 42.9268, size = 1464, normalized size = 16.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*sin(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Piecewise((15*d*x*tan(c/2 + d*x/2)**10/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*
tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) + 75*d*x*tan(c/2 +
 d*x/2)**8/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a
*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) + 150*d*x*tan(c/2 + d*x/2)**6/(120*a*d*tan(c/2
 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 60
0*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) + 150*d*x*tan(c/2 + d*x/2)**4/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan
(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 +
 120*a*d) + 75*d*x*tan(c/2 + d*x/2)**2/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*
tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) + 15*d*x/(120*a*d*
tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)*
*4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) + 30*tan(c/2 + d*x/2)**9/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*t
an(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2
 + 120*a*d) - 180*tan(c/2 + d*x/2)**7/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*t
an(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) + 480*tan(c/2 + d*x
/2)**6/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*t
an(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) - 160*tan(c/2 + d*x/2)**4/(120*a*d*tan(c/2 + d*x/2
)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*ta
n(c/2 + d*x/2)**2 + 120*a*d) + 180*tan(c/2 + d*x/2)**3/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2
)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) +
160*tan(c/2 + d*x/2)**2/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2
)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) - 30*tan(c/2 + d*x/2)/(120*a*d*ta
n(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4
 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d) + 32/(120*a*d*tan(c/2 + d*x/2)**10 + 600*a*d*tan(c/2 + d*x/2)**8 + 1
200*a*d*tan(c/2 + d*x/2)**6 + 1200*a*d*tan(c/2 + d*x/2)**4 + 600*a*d*tan(c/2 + d*x/2)**2 + 120*a*d), Ne(d, 0))
, (x*sin(c)**2*cos(c)**4/(a*sin(c) + a), True))

________________________________________________________________________________________

Giac [A]  time = 1.32905, size = 171, normalized size = 1.88 \begin{align*} \frac{\frac{15 \,{\left (d x + c\right )}}{a} + \frac{2 \,{\left (15 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} - 90 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 240 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} - 80 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 90 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 80 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 15 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 16\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{5} a}}{120 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/120*(15*(d*x + c)/a + 2*(15*tan(1/2*d*x + 1/2*c)^9 - 90*tan(1/2*d*x + 1/2*c)^7 + 240*tan(1/2*d*x + 1/2*c)^6
- 80*tan(1/2*d*x + 1/2*c)^4 + 90*tan(1/2*d*x + 1/2*c)^3 + 80*tan(1/2*d*x + 1/2*c)^2 - 15*tan(1/2*d*x + 1/2*c)
+ 16)/((tan(1/2*d*x + 1/2*c)^2 + 1)^5*a))/d